Enabling Substrate Technology for a Large Volume Fully Depleted Standard

February 24, 2012
1. Technology Requirements for FDSOI 28nm and beyond
 – Substrate definition
 – Soitec product roadmap

2. Controlling key elements for Fully depleted planar FDSOI (FD2D) and FinFET (FD3D) substrates using SOI
 – Thickness control
 – Strain top silicon

3. Supply

4. Other SOI applications
Agenda

1. Technology Requirements at 28nm and beyond
 - Substrate definition
 - Soitec product roadmap

2. Controlling key elements for FD2D and FD3D substrates using Smart Cut™ technology
 - Thickness control
 - Strain top silicon

3. Supply

4. Other SOI applications
Fully Depleted SOI Technology for 28nm & 20nm Mobile

Technology Requirements for the Advanced Consumer Market

<table>
<thead>
<tr>
<th></th>
<th>High-Performance Capable</th>
<th>Low Active Power</th>
<th>Low Standby Power</th>
<th>Design Portability</th>
<th>Manufacturability in Large Volumes</th>
<th>Optimized Final Application Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planar FD</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Planar Bulk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unable to combine all 3 satisfactorily</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FinFET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not available</td>
</tr>
</tbody>
</table>

6th FD Workshop - February 2012
Fully Depleted SOI Technology for 14nm Mobile

Technology Requirements for the Advanced Consumer Market

<table>
<thead>
<tr>
<th></th>
<th>High-Performance Capable</th>
<th>Low Active Power</th>
<th>Low Standby Power</th>
<th>Design</th>
<th>Manufacturability in Large Volumes</th>
<th>Optimized Final Application Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planar FD</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Evolutionary</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Planar Bulk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FinFET</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Disruptive</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Soitec Fully Depleted Substrates

Traditional Planar bulk

Severe limitations at 28nm and 20nm

End of life

40nm 28nm 20nm 14nm 11nm

First products expected at 28nm

Foundry offering starting at 14nm

Planar Fully-Depleted

Soitec FD-2D

Soitec FD-3D

FinFET
Typical Substrate Definition

<table>
<thead>
<tr>
<th>Application</th>
<th>Silicon</th>
<th>BOX</th>
<th>Key elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDSOI</td>
<td>55 – 90 nm ± 10nm</td>
<td>145 nm ± 10nm</td>
<td>Thickness uniformity is not critical. <100> orientation for top and base</td>
</tr>
<tr>
<td>FD-2D</td>
<td>12 nm ± 0.5 nm</td>
<td>25 nm ± 1nm</td>
<td>Thickness uniformity is critical as directly linked to device variability. BOX thickness key for back bias. Cristal orientation to boost mobility. Strain top silicon to boost performance.</td>
</tr>
<tr>
<td>FD-3D</td>
<td>30 nm ± 2nm</td>
<td>50 - 145 nm ± 5nm</td>
<td>Thickness uniformity drives Fin height control. BOX thickness to be optimized. Cristal orientation open. Strain top silicon to boost performance.</td>
</tr>
</tbody>
</table>
Product roadmap – SOI for Digital

<table>
<thead>
<tr>
<th>FAMILY</th>
<th>PRODUCTS</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREMIUM SOI</td>
<td>XUT+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>High Volume Manufacturing (HVM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FD 2D</td>
<td>UTBOX25</td>
<td>Dev</td>
<td>Ramp</td>
<td>HVM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UTBOX10</td>
<td>Dev</td>
<td>Ramp</td>
<td>HVM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sSOI</td>
<td>R&D</td>
<td>Dev</td>
<td>Ramp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FD 3D</td>
<td>SOI</td>
<td>Dev</td>
<td>Ramp</td>
<td>HVM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sSOI</td>
<td>R&D</td>
<td>Dev</td>
<td>Ramp</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **PDSOI devices**: FDSOI devices
- **FDSOI devices**: FinFET devices
Agenda

1. Technology Requirements at 28nm and beyond
 - Substrate definition
 - Soitec product roadmap

2. Controlling key elements for FD2D and FD3D substrates using Smart Cut™ technology
 - Thickness control
 - Strain top silicon

3. Supply

4. Other SOI applications
Product roadmap – SOI for Digital

<table>
<thead>
<tr>
<th>FAMILY</th>
<th>PRODUCTS</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREMIUM SOI</td>
<td>XUT+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FD 2D</td>
<td>UTBOX25</td>
<td>Dev</td>
<td>Ramp</td>
<td>HVM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UTBOX10</td>
<td></td>
<td>Dev</td>
<td>Ramp</td>
<td>HVM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sSOI</td>
<td>R&D</td>
<td>Dev</td>
<td>Ramp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FD 3D</td>
<td>SOI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sSOI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **PDSOI devices**
- **FDSOI devices**
- **FinFET devices**
SOI Thickness Uniformity Requirement

- For a top Si layer thickness controlled within +/- 5Å, 6 sigma; all wafers all sites
 Avt value obtained for short channels is 1.5mV-µm; typical bulk values are ~2.5mV-µm

- Spec for substrate top Si layer is ±5Å uniformity range (all points, all wafers)

![Diagram showing gate length vs. A_Vt](image)

- Extremely low local V_T variation
- Local T_{Si} well controlled < 5Å
- Record and reproducible $A_{VT} = 1.25$ mV.µm @ Lg=25nm

K. Cheng, A. Khakifirooz et. al. IEDM 2009
Smart Cut™ Process Sketch for UTBOX25: *Uniformity Control @ Atomic level*

Donor Wafer
- Buried Oxide Growth
- Implantation

Handle Wafer
- Cleaning & Bonding

UTBOX25
- SOI Layer
- BOX Layer
- Si Substrate

SmartCut Splitting

Recycling
- SOI Wafer
- Smoothing & Finishing

Thickness Uniformity Driver
Smart Cut™ process enables Å Uniformity

1. Thermal Oxidation ➞ Excellent within wafer (WiW) uniformity
2. Hydrogen implant ➞ Very uniform Rp control
3. Smart Cut tuning ➞ Post splitting range ≤ oxide range
4. Surface smoothing
5. Wafer to Wafer (WtW) thickness fine tuning

SOI Thickness Range @ 3.13 Å

WiW thickness range after oxidation

6 sigma
APC Strategy in Final Thinning:

Wafer to Wafer uniformity <±5Å

Wafer-to-wafer control managed thru APC strategy

Finishing process flow description

- Sacrificial oxidation
- Thickness measurement
- Cleaning #1
- Cleaning #N
- Final sorting
- Final thickness fine adjustment

Process step

- **Fully automated dynamic processing**

SOI Thickness control <±15 Å by line tool to tool matching

Wafer to wafer < ±5 Å
All points, All wafers Uniformity

SOI Mean Thickness (Å)

Quarter 2010-Q2 2010-Q3 2010-Q4 2011-Q1

Total SOI Thickness fluctuation (Å)

Quarter 2010-Q2 2010-Q3 2010-Q4 2011-Q1 2001-Q4

Maximum
Minimum

+/- 5 Å
+/- 10 Å
SOI Thickness Control: All Points, All Wafers

Wafer to Wafer uniformity <±5Å

UTBOX25 WiW Range 3.13 Å
SOI Thickness Variation contributions

Thickness control is ensured for all spatial frequencies
Product roadmap – SOI for Digital

<table>
<thead>
<tr>
<th>FAMILY</th>
<th>PRODUCTS</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREMIUM SOI</td>
<td>XUT+</td>
<td>High Volume Manufacturing (HVM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FD 2D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTBOX25</td>
<td>Dev</td>
<td>Ramp</td>
<td>HVM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTBOX10</td>
<td>Dev</td>
<td>Ramp</td>
<td>HVM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sSOI</td>
<td>R&D</td>
<td>Dev</td>
<td>Ramp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FD 3D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOI</td>
<td>Dev</td>
<td>Ramp</td>
<td>HVM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sSOI</td>
<td>R&D</td>
<td>Dev</td>
<td>Ramp</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PDSOI devices FDSOI devices FinFET devices
Integrating Performance in SOI: sSOI

- **Donor Wafer**
 - SiGe Buffer layer Epitaxy
 - sSi layer Epitaxy
 - Implantation
 - Cleaning & Bonding

- **Handle Wafer**
 - Buried Oxide Growth

- **sSOI – BOX25**

 - sSOI Layer
 - BOX Layer
 - Si Substrate

- **SmartCut Splitting**

- **Recycling**
 - sSOI Wafer
 - Selective Etching & Finishing

6th FD Workshop - February 2012
sSOI Raman Strain Mapping:
Performance booster

Wafer map showing the uniformity of tensile strain across the wafer

Demonstrated Strain > 1300 MPa with less than 10% variation
Product roadmap – SOI for Digital

<table>
<thead>
<tr>
<th>FAMILY</th>
<th>PRODUCTS</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREMIUM</td>
<td>XUT+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FD 2D</td>
<td>UTBOX25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UTBOX10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sSOI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FD 3D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sSOI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- PDSOI devices
- FDSOI devices
- FinFET devices
Fully Depleted 3D substrates: Faster, Cheaper, Better

1. Development Lead Time
 - SOI-based Isolation is much simpler

2. Cost and Cycle time for FinFET
 - SOI-based Isolation goes directly into fin module and device integration

Process & statistical variability
- Process induced fin height variability
- Implant induced RDF

Bulk-based Isolation adds several key modules
- N-P Trench Isolation Module
- Oxide deposition / Oxide etch / CMP
- Nwell lithography / pFET isolation doping
- Pwell lithography / nFET isolation doping

SOI FinFET is compelling on Key Fronts

FD 3D Susbstrate
- No fin height variability
- No RDF
- Simplest Fin formation
- Shorter cycle times
- Significant Cost savings

Bulk
- Implants Topi
- STI
- Oxide Recess
- Transistor
- BEOL

FD 3D Substrate
- Si etch
- Transistor
- BEOL

Time to Market
FinFET: Thickness uniformity for Fin height control

Wafer map of top Si layer thickness:
Total range all sites ±3Å

Fin height definition is done by tuning the top Si thickness

Target thickness variation +/- 10Å
FD-2D and FD-3D substrates technical readiness

<table>
<thead>
<tr>
<th>App.</th>
<th>Silicon</th>
<th>BOX</th>
<th>Key elements</th>
<th>Status</th>
</tr>
</thead>
</table>
| FD-2D | 12 nm ± 0.5 nm | 25 nm ± 1 nm | 1. Thickness uniformity is critical as directly linked to device variability
2. BOX thickness key for back bias
3. Cristal orientation to boost mobility
4. Strain top silicon to boost performance | ✓ +/- 5A thickness control implemented
✓ 10-25nm available
✓ <100> <110> notch orientation
✓ sSOi sample available |
| FD-3D | 30 nm ± 2nm | 50 - 145 nm ± 5nm | 1. Thickness uniformity drives Fin height control
2. BOX thickness to be optimized
3. Cristal orientation open
4. Strain top silicon to boost performance | ✓ +/- 10A thickness control implemented
✓ Collaboration with cust
✓ <100> <110> notch orientation
✓ First sample Q2CY12 |
Agenda

1. Technology Requirements at 28nm and beyond
 - Substrate definition
 - Soitec product roadmap

2. Controlling key elements for FD2D and FD3D substrates using Smart Cut™ technology
 - Thickness control
 - Strain top silicon

3. Supply

4. Other SOI applications
FD-2D / FD-3D Opportunities

Depending on adoption up to 6 millions SOI wafers needed in CY17

Wafer Demand per node:

- 16nm IDM
- 22nm IDM
- 32nm IDM
- 16/14nm Foundries
- 22/20nm Foundries
- 32/28nm Foundries

Scenario:
Early Transition to 14nm
2 years from 28nm to 20nm (hvm),
2 years from 20nm to 14nm (hvm)

Forecasted wafer demand

Estimates based on IC Insights, Semico, and Gartner forecast analysis.
Current Model: Soitec Manufacturing & Licensing

Customer
IDM/Foundries

Additional Licensees

ShinEtsu
Soitec
Smart Cut™ like sources

Current suppliers

New Licensees Investment

SOI Fab, Bernin (France)

SOI Fab, Singapore

Fast ramp to 6-7 Mwfr/yr when needed

1M wfr/yr

2 M wfr/yr

5 M wfr/yr

6-7 M wfr/yr

9 months

9 months

6th FD Workshop - February 2012
Ultrathin Body and Box SOI material is ready to support FD devices adoption from 28nm node

✓ HVM roadmap in place & readiness at 28nm node

✓ 20nm node specifications achieved

✓ Technology booster planned in roadmap

✓ Smart Cut is high volume proven standard
 ➢ 2 suppliers to support volumes up to 2014 & industrial model demonstrated
Agenda

1. Technology Requirements at 28nm and beyond
 - Substrate definition
 - Soitec product roadmap

2. Controlling key elements for FD2D and FD3D substrates using Smart Cut™ technology
 - Thickness control
 - Strain top silicon

3. Supply

4. Other SOI applications
A wide offer of materials for a broad range of applications

<table>
<thead>
<tr>
<th>MARKETS</th>
<th>Computing & Telecommunications</th>
<th>Consumer & Mobile</th>
<th>Industrial & Automotive</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPLICATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td>![RF Image]</td>
<td>![RF Image]</td>
<td>![RF Image]</td>
</tr>
<tr>
<td>Power/Analog</td>
<td>![Power/Analog Image]</td>
<td>![Power/Analog Image]</td>
<td>![Power/Analog Image]</td>
</tr>
<tr>
<td>Lighting</td>
<td>![Lighting Image]</td>
<td>![Lighting Image]</td>
<td>![Lighting Image]</td>
</tr>
<tr>
<td>Photonics / MEMS</td>
<td>![Photonics / MEMS Image]</td>
<td>![Photonics / MEMS Image]</td>
<td>![Photonics / MEMS Image]</td>
</tr>
</tbody>
</table>

Soitec products
- Xtreme SOI Premium SOI
- Wave SOI GaAs EPI RF SOS
- Smart Power SOI
- Imager SOI Stacking for Imager
- Smart Power SOI
- Photonics SOI Stacking for MEMS
SOI Product Lines

- **Imager SOI**
 - 1.5µm
- **Smart Power SOI**
 - 1.0µm
 - 2.0µm
 - 3.0µm
- **Photonics SOI**
 - 0.1µm
 - 0.145µm
 - 0.05µm
- **Wave SOI**
 - 0.01µm
 - 0.01µm
 - 0.03µm
 - 0.07µm
 - 0.25µm
- **Premium SOI**
 - 0.09µm
- **FD2D/FD3D**
 - 0.03µm
 - 0.01µm

Buried Oxide (BOx), ‘Base’ or ‘handle’ = ‘Bulk substrate’

BOX Thickness

Top Si Thickness

6th FD Workshop - February 2012
Thank You!
Disclaimer

© Exclusive property of Soitec. This document contains confidential information. Disclosure, redisclosure, dissemination, redissemination, reproduction or use is limited to authorized persons only. Disclosure to third parties requires a Non Disclose Agreement. Use or reuse, in whole or in part, by any means and in any form, for any purpose other than which is expressly set forth in this document is forbidden.